
Introduction to R, RStudio
and Quarto

1

Overview
1. Getting Started

About R

The R Studio IDE

Import and eyeball data

2. Anatomy of a data.frame
Data structure

Classes

Vectors

Subsetting

3. Wrap Up

Summary and key takeaways

4. Markdown and universal writing

Office Model vs. Engineering Model

Excel failures

Markdown

5. Writing reports in Quarto

What is Quarto?

YAML header

Code chunks

Text formatting

Run and render your code

Inline code

Tables

Preset themes

Report parameters

2

Getting Started

4

About R
R is a programming language and free
software environment for statistical
computing and graphics.

The R language is widely (and
increasingly) used in academic and non-
academic research in fields like:

Economics

Statistics

Biostatistics

5

The R Studio IDE

6

The Console panel
This is where you communicate with R

You can write instructions after the
>, press enter, and R will execute

Try with 1+1:

1+11

[1] 2

7

The Source panel
This is where you write and save your
code (File > New File > R Script)

Separate different commands with a
line break

The # symbol allows you to
comment your code

Everything after the # will be
ignored by R until the next line
break

1+1 # Do not put 2+2 on the same line, press enter to go to next line 1
2+22

8

The Source panel
To send the command from the source
panel to the console panel:

1. Click on/Highlight the line(s) you
want to execute

2. Press ctrl + enter

If you do not highlight anything the line
of code where your cursor stands will
be executed

Check the console to see the output of
your code

9

The Environment panel
Data analysis requires manipulating
datasets, vectors, functions, etc.

These elements are stored in the
environment panel.

For instance, we can assign a value to
an object using <-:

x <- 11

Now that the object x is stored in your
environment, you can use it

x + 1 1

[1] 2

You can also modify that object at any
point:

x <- x + 1 1
x2

[1] 2 10

The Files/Plots/… panel
In this panel, we’ll mainly be interested
in the following 4 tabs:

Files: Shows your working directory

Plots: Where R returns plots

Packages: A library of tools that we
can load if needed

Help: Where to look for
documentation on R functions

11

The Files/Plots/… panel

Enter ?getwd() in the console to see
what a help file looks like:

It describes what the command does

It explains the different parameters
of the command

It gives examples of how to use the
command

12

Practice
1. Open a new R script (Ctrl + Shift + N) and write a code to create these

objects:

Objects to create

Object name: a b c

Assigned value: 2 4 5

2. Run this code and create a new object named result that takes the value

Basic operations in R

Operation: Addition Subtraction Multiplication Division Exponentiation Parentheses

Symbol in R: + - * / ^ ()

3. Print result in your console and save your script somewhere on your computer
(Ctrl+S)

03:00

13

Solution
1. Open a new R script (Ctrl + Shift + N) and write a code to create these

objects:

Objects to create

Object name: a b c

Assigned value: 2 4 5

2. Run this code and create a new object named result that takes the value

3. Print result in your console and save your script somewhere on your computer
(Ctrl+S)

a <- 21
b <- 42
c <- 53

+ (b − ab×c
a)c

result <- b*c/a + (b-a)^c1

result1

[1] 42

14

Import and Eyeball Data
We now know how to use R as a calculator, but our goal is to analyze data!

Take for instance the statistics from the last season of Ligue 1 available at
fbref.com

15

https://fbref.com/en/comps/13/schedule/Ligue-1-Scores-and-Fixtures

Import and Eyeball Data
You can download the dataset for the 2021/22 season or from the
course webpage.

Note that the file extension is .csv (for Comma Separated Values).

Let’s take a look at the first 5 lines of the raw .csv file:

by clicking here

Wk,Day,Date,Time,Home,xG,Score,xG,Away,Attendance,Venue,Referee,Match Report,Notes1
1,Fri,2021-08-06,21:00,Monaco,2.0,1–1,0.3,Nantes,7500,Stade Louis II.,Antony Gautier,Match Report,2
1,Sat,2021-08-07,17:00,Lyon,1.4,1–1,0.8,Brest,29018,Groupama Stadium,Mikael Lesage,Match Report,3
1,Sat,2021-08-07,21:00,Troyes,0.8,1–2,1.2,Paris S-G,15248,Stade de l'Aube,Amaury Delerue,Match Report,4
1,Sun,2021-08-08,13:00,Rennes,0.6,1–1,2.0,Lens,22567,Roazhon Park,Bastien Dechepy,Match Report,5

The .csv format is very common and follows a specific structure:

Each line corresponds to a row (the first row typically contains column names).

For each row, values of each column are separated by commas.

But how do we get it into our RStudio environment?

16

https://louissirugue.github.io/metrics_on_R/lecture1/data.zip

Import and Eyeball Data
To import stuff in R we use read functions

They take the file directory as an input

And give the file content as an output

The read function dedicated to .csv files is read.csv (later we will mostly use
read_csv)

Remember we use the arrow (<-) to create objects in R

data <- read.csv("/Users/jan/Downloads/ligue1.csv")1

Make sure you have the right path to your data file. Also, make sure you use correct backlashes “/”. Do NOT use “\”.

Important

Let’s inspect this new object

17

The first thing we can do is to use head() to print the top rows

head(data, 3)1

 Wk Day Date Time Home xG Score xG.1 Away Attendance
1 1 Fri 2021-08-06 21:00 Monaco 2.0 1-1 0.3 Nantes 7500
2 1 Sat 2021-08-07 17:00 Lyon 1.4 1-1 0.8 Brest 29018
3 1 Sat 2021-08-07 21:00 Troyes 0.8 1-2 1.2 Paris S-G 15248
 Venue Referee Match.Report Notes
1 Stade Louis II. Antony Gautier Match Report NA
2 Groupama Stadium Mikael Lesage Match Report NA
3 Stade de l'Aube Amaury Delerue Match Report NA

tail() would print the bottom rows

We can also run View(data) (a new tab will pop-up in your Source panel)

18

Seems like it worked!

19

Or kind of worked…

20

These kind of weird characters pop up when there is an encoding issue

Thankfully, read.csv() has many options that can be set as inputs, including
encoding!

Usually the UTF-8 encoding is the solution to French characters

data <- read.csv("/Users/jan/Downloads/ligue1.csv", encoding = "UTF-8")1

When you will be facing similar issues, check out the arguments of read.csv() by
typing ?read.csv

21

Overview
1. Getting Started

About R

The R Studio IDE

Import and eyeball data

2. Anatomy of a data.frame
Data structure

Classes

Vectors

Subsetting

22

Anatomy of a
data.frame

24

Data Structure
Now that we imported the data properly, we can check out its str()ucture in more
details

str(data)1

25

Data Structure
Don’t be scared of the output!

str(data)1

'data.frame': 380 obs. of 14 variables:
 $ Wk : int 1 1 1 1 1 1 1 1 1 1 ...
 $ Day : chr "Fri" "Sat" "Sat" "Sun" ...
 $ Date : chr "2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08" ...
 $ Time : chr "21:00" "17:00" "21:00" "13:00" ...
 $ Home : chr "Monaco" "Lyon" "Troyes" "Rennes" ...
 $ xG : num 2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5 ...
 $ Score : chr "1-1" "1-1" "1-2" "1-1" ...
 $ xG.1 : num 0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2 ...
 $ Away : chr "Nantes" "Brest" "Paris S-G" "Lens" ...
 $ Attendance : int 7500 29018 15248 22567 18748 23250 18030 20461 15551 13500 ...
 $ Venue : chr "Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park" ...
 $ Referee : chr "Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy" ...
 $ Match.Report: chr "Match Report" "Match Report" "Match Report" "Match Report" ...
 $ Notes : logi NA NA NA NA NA NA ...

26

Data Structure
str() says that data is a data.frame, and gives its numbers of observations
(rows) and variables (columns)

str(data)1

'data.frame': 380 obs. of 14 variables:1

27

Data Structure
It also gives the variables names

str(data)1

'data.frame': 380 obs. of 14 variables:1
$ Wk 2
$ Day 3
$ Date 4
$ Time 5
$ Home 6
$ xG 7
$ Score 8
$ xG.1 9
$ Away 10
$ Attendance 11
$ Venue 12
$ Referee 13
$ Match.Report14
$ Notes 15

28

Data Structure
The first values of each variable

str(data)1

'data.frame': 380 obs. of 14 variables:1
$ Wk : 1 1 1 1 1 1 1 1 1 1 ...2
$ Day : "Fri" "Sat" "Sat" "Sun" ...3
$ Date : "2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08" ...4
$ Time : "21:00" "17:00" "21:00" "13:00" ...5
$ Home : "Monaco" "Lyon" "Troyes" "Rennes" ...6
$ xG : 2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5 ...7
$ Score : "1–1" "1–1" "1–2" "1–1" ...8
$ xG.1 : 0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2 ...9
$ Away : "Nantes" "Brest" "Paris S-G" "Lens" ...10
$ Attendance : 7500 29018 15248 22567 18748 23250 18030 20461 15551 13500 ...11
$ Venue : "Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park" ...12
$ Referee : "Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy" ...13
$ Match.Report: "Match Report" "Match Report" "Match Report" "Match Report" ...14
$ Notes : NA NA NA NA NA NA ...15

29

Data Structure
As well as the class of each variable

str(data)1

'data.frame': 380 obs. of 14 variables:1
$ Wk : int 1 1 1 1 1 1 1 1 1 1 ...2
$ Day : chr "Fri" "Sat" "Sat" "Sun" ...3
$ Date : chr "2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08" ...4
$ Time : chr "21:00" "17:00" "21:00" "13:00" ...5
$ Home : chr "Monaco" "Lyon" "Troyes" "Rennes" ...6
$ xG : num 2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5 ...7
$ Score : chr "1–1" "1–1" "1–2" "1–1" ...8
$ xG.1 : num 0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2 ...9
$ Away : chr "Nantes" "Brest" "Paris S-G" "Lens" ...10
$ Attendance : int 7500 29018 15248 22567 18748 23250 18030 20461 15551 13500 ...11
$ Venue : chr "Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park" ...12
$ Referee : chr "Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy" ...13
$ Match.Report: chr "Match Report" "Match Report" "Match Report" "Match Report" ...14
$ Notes : logi NA NA NA NA NA NA ...15

30

Data Structure
But what does the class correspond to?

str(data)1

'data.frame': 380 obs. of 14 variables:1
$ Wk : int ?2
$ Day : chr ?3
$ Date : chr ?4
$ Time : chr ?5
$ Home : chr ?6
$ xG : num ?7
$ Score : chr ?8
$ xG.1 : num ?9
$ Away : chr ?10
$ Attendance : int ?11
$ Venue : chr ?12
$ Referee : chr ?13
$ Match.Report: chr ?14
$ Notes : logi ?15

31

Classes
Numeric
These are simply numbers:

Numeric variable classes
include:

int for round numbers

dbl for 2-decimal
numbers

class(3)1

[1] "numeric"

class(-1.89278)1

[1] "numeric"

Character
They must be surrounded
by " or ':

We also call these values:

Character strings

Or just strings

class("Paris Saint-Germain")1

[1] "character"

class("35")1

[1] "character"

Logical
Something either TRUE of
FALSE:

Operator Meaning
== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

& And

| Or

! Opposite

3 >= 41

[1] FALSE

class(3 >= 4)1

[1] "logical"

class(TRUE)1

[1] "logical"

32

Classes
Guess the output!

as.numeric("2022")1

[1] 2022

What about this one?

as.character(2022-2023)1

[1] "-1"

And a final one.

as.character(2022>2023)1

[1] "FALSE"

33

Classes
numeric character logical

as.numeric() No effect Converts strings of
numbers into numeric

values
Returns NA if characters in

the string

Returns 1 if TRUE
Returns 0 if FALSE

as.character() Converts numeric values
into strings of numbers

No effect Returns "TRUE" if TRUE
Returns "FALSE" if FALSE

as.logical() Returns TRUE if != 0
Returns FALSE if 0

Returns TRUE if "T"
or"TRUE"

Returns FALSE if "F" or
"FALSE"

Returns NA otherwise

No effect

NA stands for ‘Not Available’, it corresponds to a missing value

34

Classes
One last mystery…

str(data)1

'data.frame': 380 obs. of 14 variables:
 $ Wk : int 1 1 1 1 1 1 1 1 1 1 ...
 $ Day : chr "Fri" "Sat" "Sat" "Sun" ...
 $ Date : chr "2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08" ...
 $ Time : chr "21:00" "17:00" "21:00" "13:00" ...
 $ Home : chr "Monaco" "Lyon" "Troyes" "Rennes" ...
 $ xG : num 2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5 ...
 $ Score : chr "1-1" "1-1" "1-2" "1-1" ...
 $ xG.1 : num 0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2 ...
 $ Away : chr "Nantes" "Brest" "Paris S-G" "Lens" ...
 $ Attendance : int 7500 29018 15248 22567 18748 23250 18030 20461 15551 13500 ...
 $ Venue : chr "Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park" ...
 $ Referee : chr "Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy" ...
 $ Match.Report: chr "Match Report" "Match Report" "Match Report" "Match Report" ...
 $ Notes : logi NA NA NA NA NA NA ...

35

Classes
Are these dollar signs here for a reason?

str(data)1

'data.frame': 380 obs. of 14 variables:1
$ Wk 2
$ Day 3
$ Date 4
$ Time 5
$ Home 6
$ xG 7
$ Score 8
$ xG.1 9
$ Away 10
$ Attendance 11
$ Venue 12
$ Referee 13
$ Match.Report14
$ Notes 15

36

Vectors
It’s actually just a reference to the fact that $ allows to extract a variable from a
dataset

data$Home1

 [1] "Monaco" "Lyon" "Troyes" "Rennes"
 [5] "Bordeaux" "Strasbourg" "Nice" "Saint-Étienne"
 [9] "Metz" "Montpellier" "Lorient" "Lille"
 [13] "Paris S-G" "Angers" "Clermont Foot" "Brest"
 [17] "Nantes" "Reims" "Lens" "Marseille"
 [21] "Brest" "Monaco" "Saint-Étienne" "Lyon"
 [25] "Strasbourg" "Metz" "Montpellier" "Bordeaux"
 [29] "Rennes" "Nantes" "Nice" "Marseille"
 [33] "Troyes" "Strasbourg" "Angers" "Lens"
 [37] "Clermont Foot" "Lille" "Reims" "Lorient"
 [41] "Paris S-G" "Monaco" "Montpellier" "Rennes"
 [45] "Bordeaux" "Brest" "Metz" "Nantes"
 [49] "Lyon" "Strasbourg" "Lens" "Saint-Étienne"
 [53] "Nice" "Troyes" "Clermont Foot" "Reims"
 [57] "Angers" "Marseille" "Paris S-G" "Rennes"
 [61] "Nantes" "Lille" "Montpellier" "Monaco"
 [65] "Lyon" "Lens" "Lorient" "Angers"
 [69] "Metz" "Saint-Étienne" "Strasbourg" "Paris S-G"
 [73] "Lyon" "Bordeaux" "Troyes" "Brest"
 [77] "Reims" "Clermont Foot" "Marseille" "Lens"
 [81] "Montpellier" "Nice" "Rennes" "Lorient"
 [85] "Monaco" "Angers" "Nantes" "Lille"
 [89] "Saint-Étienne" "Paris S-G" "Clermont Foot" "Lyon"
 [93] "Troyes" "Brest" "Bordeaux" "Metz"
 [97] "Strasbourg" "Montpellier" "Marseille" "Saint-Étienne"
[101] "Nantes" "Lille" "Nice" "Rennes"
[105] "Lens" "Lorient" "Reims" "Monaco"
[109] "Marseille" "Nice" "Paris S-G" "Metz" 37

Vectors
Variables are basically objects that we call vectors

Vectors are sequences of values that have the same class

R won’t let you create a vector containing elements of different classes

We make our own vectors using the c()oncatenate function

some_vector <- c("Hello world", 35, FALSE)1
some_vector 2

[1] "Hello world" "35" "FALSE"

Note that R will coerce the different elements into the same class when we create a
vector (in this case character)

class(some_vector)1

[1] "character"

The fact that vectors are homogeneous in class allows that operations apply to all
their elements

c(1, 2, 3) / 31

[1] 0.3333333 0.6666667 1.0000000

3 / c(1, 2, 3) 1

[1] 3.0 1.5 1.0
38

Subsetting
With $, you can extract a single variable from a dataset

You can extract several variables and specific observations from a data frame using
[]

data[row(s), column(s)]
Inside the brackets, indicate what you
want to keep using:

Indices: e.g., the third column has
index 3

Logical: A vector of TRUE and FALSE

Names: They must be in quotation
marks

Example:

We can also subset single vectors:

data[1, c("Venue", "Attendance")]1

 Venue Attendance
1 Stade Louis II. 7500

vector <- c(3, 2, 1)1
vector[c(TRUE, TRUE, FALSE)]2

[1] 3 2

39

Practice
1. Download and import the dataset if you haven’t already

2. Combine the use of [] and the function nrow() to obtain the last value of the Wk
variable

3. Subset the home team, the score, and the away team for matches that occured
during the last week

Instead of str(), you can use the names() function to display all the variable names of a data frame.

Tip

04:00

40

Solution
1. Download and import the dataset if you haven’t already

2. Combine the use of [] and the function nrow() to obtain the last value of the Wk
variable.

data <- read.csv("/Users/jan/Downloads/ligue1.csv")1

last_week <- data[nrow(data), "Wk"]1
last_week2

[1] 38

41

3. Subset the home team, the score, and the away team for matches that occured
during the last week

names(data)1

 [1] "Wk" "Day" "Date" "Time" "Home"
 [6] "xG" "Score" "xG.1" "Away" "Attendance"
[11] "Venue" "Referee" "Match.Report" "Notes"

data[Wk == last_week, c("Home", "Score", "Away")]1

Error: object 'Wk' not found

Oops! Seems like R couldn’t find the Wk variable

R was looking for Wk in our environment

But there is no Wk there

We must refer to the data frame data which is in our environment

Then we can access Wk using the $ symbol

data[data$Wk == last_week, c("Home", "Score", "Away")]1

 Home Score Away
371 Lille 2-2 Rennes
372 Brest 2-4 Bordeaux
373 Nantes 1-1 Saint-Étienne
374 Clermont Foot 1-2 Lyon
375 Angers 2-0 Montpellier
376 Lorient 1-1 Troyes
377 Paris S-G 5-0 Metz
378 Reims 2-3 Nice 42

379 Marseille 4-0 Strasbourg

Overview
1. Getting Started

About R

The R Studio IDE

Import and eyeball data

2. Anatomy of a data.frame
Data structure

Classes

Vectors

Subsetting

3. Wrap Up

Summary and key take-aways

43

Wrap Up
Import data

data <- read.csv("/Users/jan/Downloads/ligue1.csv")1

Class
is.numeric("1.6180339") # What would be the output?1

[1] FALSE

Subsetting
data$Home[3] # What would be the output?1

[1] "Troyes"

44

Overview
1. Getting Started

About R

The R Studio IDE

Import and eyeball data

2. Anatomy of a data.frame
Data structure

Classes

Vectors

Subsetting

3. Wrap Up

Summary and key take-aways

4. Markdown and universal writing

Office Model vs. Engineering Model

Excel failures

Markdown

45

Markdown and universal
writing

47

O!ce Model vs. Engineering Model
Writing up research is a complicated, messy process!

48

O!ce Model vs. Engineering Model
Loads of puzzle pieces:

Data

Statistical results

Fieldwork

Analysis

Figures

Tables

Citations

Text

Each of these comes from a different place

49

O!ce Model vs. Engineering Model
Two general approaches for this mess:

The Office model

Manually put everything in one
document (and repeat often)

The Engineering model

Work with the raw pieces and compile it
all in the end

50

The O!ce Model
Everything lives in one .docx file

Drag images in

Copy/paste stats from R

Connect Word to Zotero or Endnote

Track versions with filenames:

ms.docx, ms2_final.docx,
ms2_final_final.docx

Final output = .docx file

51

The Engineering Model
Everything lives separately and is
combined in the end

Type text in a plain text document

Import images automatically

Import stats automatically from R scripts
(.R or .qmd) or .do files

Store citations in reference manager

Track versions with git

Final output = whatever you want (Word,
PDF, HTML)

52

O!ce Model vs. Engineering Model
There is no one right way!

The Office model

Cons:

The Engineering model

Cons:

With changing analyses or data, manually
updating your doc is laborous

Chaos-prone:

You got to remember which script generated
what)

Error-prone:

It is easy to forget to update all figures,
tables, results in text, etc.

A bit of an entry cost

Need to learn a new coding language

You’ll always work with people who only use
Word

53

O!ce Model vs. Engineering Model
The Office model

Pros:

The Engineering model

Pros:

No coding, easy environments

The whole world runs on Word

Less cognitive load

While everything seems complex in the
beginning, no chaos because all is
documented and transparent

Less work load (in the long run)

No need to copy/paste new results, add
updated figures, reformat citation, etc.

Transparency

There’s a record of everything you do

Your findings are reproducible by anyone
(and yourself!)

54

Excel failures

Dept:GDP ratio 90%+ → -0.1% growth

Paul Ryan’s 2013 House budget resolution

55

Excel failures

Thomas Herndon

From Paul Krugman, “The Excel Depression”

56

https://www.nytimes.com/2013/04/19/opinion/krugman-the-excel-depression.html

Engineering model in real life
Private companies and governments use the engineering model to write reports on
data

Airbnb

The UK’s reproducible analysis pipeline

57

https://peerj.com/preprints/3182.pdf
https://dataingovernment.blog.gov.uk/2017/03/27/reproducible-analytical-pipeline/

So, what is Markdown?
There are many different typesetting languages in which you can write.

The most widely used ones are perhaps LaTeX (mostly scientific work), HTML (web-
based stuff) and Word.

How to get around learning all of them
and having to switch for different
outputs?

Write in one simplified syntax
(Markdown)

Convert to whatever output you
want

58

And what is RMarkdown/Quarto?
Quarto and RMarkdown are publishing systems which use markdown language.

They allow you to render to different outcome formats

They allow to combine code, figures, tables, images, text etc. (more on that now)

To HTML1
quarto render manuscript.qmd --to html2

3
To Word4
quarto render manuscript.qmd --to docx5

6
To PDF (through LaTeX)7
quarto render manuscript.qmd --to pdf8

59

Overview
1. Getting Started

About R

The R Studio IDE

Import and eyeball data

Use functions

2. Anatomy of a data.frame
Data structure

Classes

Vectors

Subsetting

3. Wrap Up

Summary and key take-aways

4. Markdown and universal writing

Office Model vs. Engineering Model

Excel failures

Markdown

5. Writing reports in Quarto

What is Quarto?

YAML header

Code chunks

Text formatting

Run and render your code

Inline code

Tables

Preset themes

Report parameters

60

Writing reports in Quarto

62

What is Quarto?
Quarto is an open-source publishing system in which you can both write/run code
(R/Python/Julia/Observable) and edit text

Quarto is the newer, fancier version of RMarkdown (which only worked with R code)

It is structured around 3 types of content:

Code chunks to run and render the output

Editable text to display

YAML metadata for the Quarto build process

63

What is Quarto?
Let’s create our first Quarto document!

Click on File > New File > Quarto document

64

What is Quarto?
It creates a template containing the 3 types of content:

YAML header

Text

Code Chunk

65

Basic principles
YAML Header

The YAML header contains general information related to the file configuration:

Title/subtitle (in quotes)

Author/date (in quotes)

Output type (html/pdf)

Editor configuration (use source, not visual)

…

It should be specified at the very beginning of the document and surrounded by
three dashes like this:

---1
title: "My first Quarto document"2
subtitle: "What a blast"3
author: "My Name"4
date: "05/01/2024"5
format: html6
editor: source7
---8 66

Basic principles
Code Chunks

Code chunks are blocks of R code that can be run when working on and rendering
the .qmd file

You can insert a code chunk using Ctrl + Alt + i or by typing the backticks
chunk delimiters as follows

1 + 11

When rendering the document, R will execute the code

Both the code and the output will appear in the document like so

1 + 11

[1] 2

67

Basic principles
Code Chunks

The content to be displayed from the code chunk can be specified in chunk options

For instance, to display only the output and not the code chunk, you can set echo
to FALSE

And the output will only be

Instead of

```{r, echo = F}1
1+12
```3

```{r}1
#| echo: false2
1+1 3
```4

[1] 2

1 + 11

[1] 2

68

Basic principles
Code Chunks

Chunk Options to Know

Option Default Effect

eval TRUE Whether to evaluate the code and include its results

echo TRUE Whether to display code along with its results

warning TRUE Whether to display warnings

error TRUE Whether to display errors

message TRUE Whether to display messages

results 'markup' 'hide' to hide the output

fig.width 7 Width in inches for plots created in chunk

fig.height 7 Height in inches for plots created in chunk

69

Basic principles
Code Chunks

For an option to be the default for the whole document, set it up in the YAML
header:

---1
title: "My first Quarto document"2
format: html3
execute:4
 echo: false5
 warning: false6
---7

70

Basic principles
Text Formatting

Quarto is not only about rendering code but also about writing actual text

You can write paragraphs as you would normally do on a typical report

And Quarto provides convenient ways to format your text

Unlike most text editing software, in source Quarto text formatting isn’t about
clicking on dedicated buttonds

It relies on symbols that should be written along with the text

71

Basic principles
Text Formatting

Type… …to get

Some text in a paragraph.

More text in the next paragraph. Always use empty lines between paragraphs.

Italic or _Italic_ Italic

Bold or __Bold__ Bold

Heading 1

Heading 1
Heading 2 Heading 2
Heading 3 Heading 3
(Go up to heading level 6 with ######)

[Link text](https://www.example.com)

Some text in a paragraph.1
2

More text in the next paragraph. Always3
use empty lines between paragraphs.4

Link text

72

https://www.example.com/

Basic principles
Run and render your code

You have different options to execute
the content of a code chunk in Quarto

Check out the buttons at the top
right of the chunk

To render a Quarto file, click on the
render button

73

Useful features
Inline code

Quarto allows to include R output directly in text

To do this, use `r r_code_here`

… would render to this:

```{r}1
#| label: find-avg-mpg2
#| echo: false3
number_of_days <- 54
```5

6
We are `r number_of_days` days into the week. 7

We are 5 days into the week.

74

That’s it for today :)

75

