Introduction to R, RStudio and Quarto

Overview

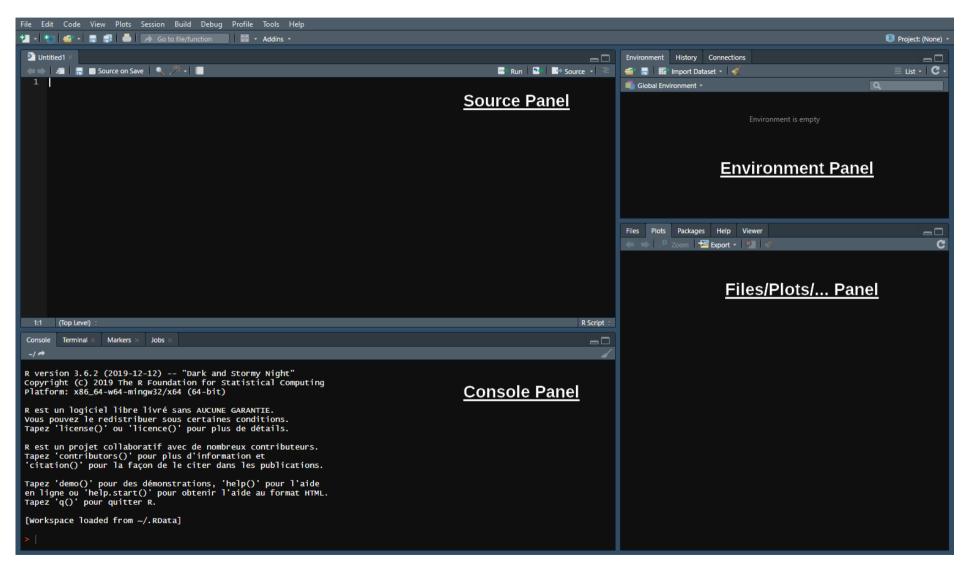
1. Getting Started

- About R
- The R Studio IDE
- Import and eyeball data
- 2. Anatomy of a data.frame
 - Data structure
 - Classes
 - Vectors
 - Subsetting
- 3. Wrap Up
 - Summary and key takeaways

- 4. Markdown and universal writing
 - Office Model vs. Engineering Model
 - Excel failures
 - Markdown

5. Writing reports in Quarto

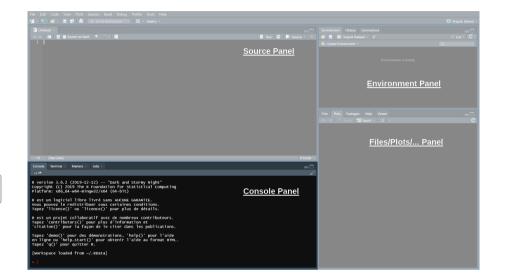
- What is Quarto?
- YAML header
- Code chunks
- Text formatting
- Run and render your code
- Inline code
- Tables
- Preset themes
- Report parameters


Getting Started

About R

- R is a **programming language** and free software environment for **statistical computing and graphics**.
- The R language is widely (and increasingly) used in academic and nonacademic research in fields like:
 - Economics
 - Statistics
 - Biostatistics

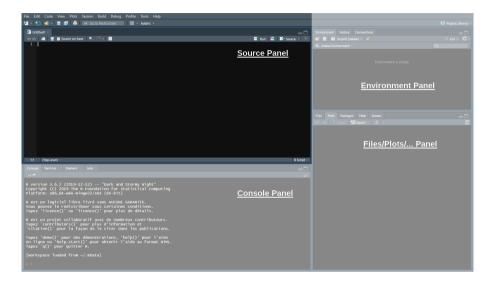
The R Studio IDE



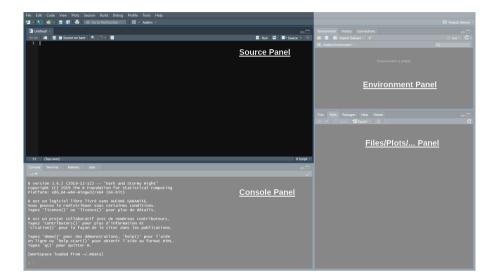
The Console panel

- This is where you communicate with R
 - You can write instructions after the
 >, press enter, and R will execute
 - Try with **1+1**:

1 **1+1**


[1] 2

The Source panel


- This is where you write and save your code (File > New File > R Script)
 - Separate different commands with a line break
 - The # symbol allows you to comment your code
 - Everything after the # will be ignored by R until the next line break

1 1+1 # Do not put 2+2 on the same line, press enter
2 2+2

The Source panel

- To send the command from the source panel to the console panel:
 - 1. **Click on/Highlight** the line(s) you want to execute
 - 2. Press ctrl + enter
- If you do not highlight anything the line of code where your cursor stands will be executed
- Check the console to see the output of your code

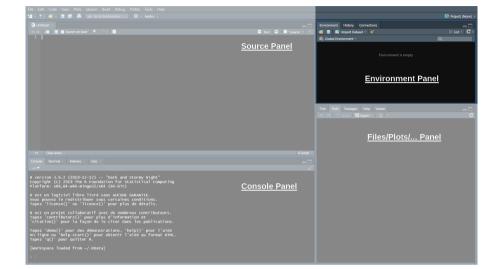
The Environment panel

- Data analysis requires manipulating datasets, vectors, functions, etc.
 - These elements are stored in the environment panel.
- For instance, we can assign a value to an object using <-:

1 x <- 1

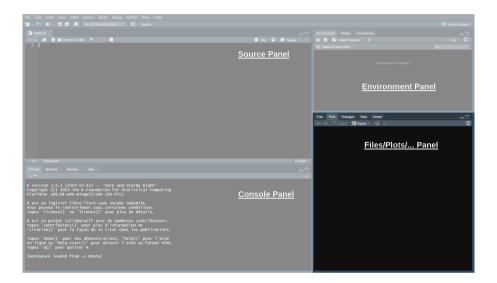
• Now that the object x is stored in your environment, you can use it

1 x + 1


[1] 2

• You can also modify that object at any point:

1 x <- x + 1


2 **x**

The Files/Plots/... panel

- In this panel, we'll mainly be interested in the following 4 tabs:
 - Files: Shows your working directory
 - Plots: Where R returns plots
 - Packages: A library of tools that we can load if needed
 - Help: Where to look for documentation on R functions

The Files/Plots/... panel

- Enter ?getwd() in the console to see what a help file looks like:
 - It describes what the command does
 - It explains the different parameters of the command
 - It gives examples of how to use the command

R: Get or Set Working Directory - Find in Topic getwd {base} R Documentation Get or Set Working Directory Description getwd returns an absolute filepath representing the current working directory of the R process; setwd (dir) is used to set the working directory to dir. Usage getwd() setwd(dir) Arguments dir A character string: tilde expansion will be done Details See files for how file paths with marked encodings are interpreted. Value getwd returns a character string or NULL if the working directory is not available. On Windows the path returned will use / as the path separator and be encoded in UTF-8. The path will not have a trailing / unless it is the root directory (of a drive or share on Windows). setwd returns the current directory before the change, invisibly and with the same conventions as getwd. It will give an error if it does not succeed (including if it is not implemented). Note Note that the return value is said to be an absolute filepath: there can be more than one representation of the path to a directory and on some OSes the value returned can differ after changing directories and changing back to the same directory (for example if symbolic links have been traversed). See Also list.files for the contents of a directory. normalizePath for a 'canonical' path name Examples (WD <- getwd()) if (!is.null(WD)) setwd(WD)

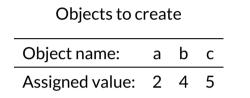
[Package base version 4.0.2 Index]

Practice

1. Open a new R script (Ctrl + Shift + N) and write a code to create these objects:

Objects to c	reat	e	
Object name:	а	b	С
Assigned value:	2	4	5

2. Run this code and create a new object named result that takes the value


Operation:	Addition	Subtraction	Multiplication	Division	Exponentiation	Parentheses
Symbol in R:	+	-	*	/	^	()

Basic operations in R

3. Print result in your console and save your script somewhere on your computer (Ctrl+S)

Solution

1. Open a new R script (Ctrl + Shift + N) and write a code to create these objects:

1	a <- 2	
2	b <- 4	
3	c <- 5	

2. Run this code and create a new object named result that takes the value $\frac{b \times c}{a} + (b - a)^{c}$

```
1 result <- b*c/a + (b-a)^c</pre>
```

3. Print result in your console and save your script somewhere on your computer (Ctrl+S)

1 result		
[1] 42		

Import and Eyeball Data

- We now know how to **use R** as a calculator, but our goal is **to analyze data!**
 - Take for instance the statistics from the last season of Ligue 1 available at fbref.com

	_	_				-	-					
_	Day	Date	Time	Home		Score		Away	Attendance	Venue	Referee	Match Report Note
	Fri	2024-08-16		<u>Le Havre</u>	0.2			Paris S-G	•	Stade Océane		Match Report
	Sat	2024-08-17		Brest	1.3	<u>1-5</u>		<u>Marseille</u>	•	Stade Francis-Le Blé		Match Report
			19:00	<u>Reims</u>	0.1	<u>0-2</u>		Lille	•	Stade Auguste-Delaune		Match Report
			21:00	<u>Monaco</u>	2.0	<u>1-0</u>		Saint-Étienne	•	Stade Louis II		Match Report
	Sun	2024-08-18	15:00	Auxerre	1.8	<u>2-1</u>	0.7	Nice	16,354	Stade de l'Abbé Deschamps		Match Report
			17:00	Montpellier	1.3	<u>1-1</u>	0.9	<u>Strasbourg</u>	15,706	Stade de la Mosson-Mondial 98		Match Report
			17:00	Toulouse	1.7	<u>0-0</u>	0.5	Nantes	25,491	Stadium de Toulouse	Jeremy Stinat	Match Report
			17:00	<u>Angers</u>	0.4	<u>0-1</u>	1.2	<u>Lens</u>	14,811	Stade Raymond Kopa		Match Report
			20:45	<u>Rennes</u>	2.0	<u>3-0</u>	2.1	<u>Lyon</u>	26,026	Roazhon Park		Match Report
2	Fri	2024-08-23	20:45	Paris S-G	3.8	<u>6-0</u>	0.6	Montpellier	46,000	Parc des Princes		Match Report
	Sat	2024-08-24	17:00	<u>Lyon</u>	0.0	<u>0-2</u>	2.2	<u>Monaco</u>	54,392	Groupama Stadium		Match Report
			19:00	<u>Lille</u>	0.9	<u>2-0</u>	0.6	Angers	36,906	Decathlon Arena - Stade Pierre-Mauroy		Match Report
			21:00	Saint-Étienne	1.1	<u>0-2</u>	2.4	<u>Le Havre</u>	16,958	Stade Geoffroy-Guichard		Match Report
	Sun	2024-08-25	15:00	<u>Lens</u>	2.9	<u>2-0</u>	0.9	Brest	37,435	Stade Bollaert-Delelis		Match Report
			17:00	Nice	1.3	<u>1-1</u>	1.0	Toulouse	21,656	Allianz Riviera		Match Report
			17:00	<u>Nantes</u>	1.4	<u>2-0</u>	1.1	Auxerre	31,077	Stade de la Beaujoire - Louis Fonteneau	Gaël Angoula	Match Report
			17:00	<u>Strasbourg</u>	0.7	<u>3-1</u>	1.1	<u>Rennes</u>	19,026	Stade de la Meinau		Match Report
			20:45	Marseille	3.0	2-2	0.9	Reims	63.841	Orange Vélodrome		Match Report

Import and Eyeball Data

- You can **download** the dataset for the 2021/22 season by clicking here or from the course webpage.
 - Note that the file extension is **.csv** (for **Comma Separated Values**).
 - Let's take a look at the **first 5 lines** of the raw . CSV file:

Wk,Day,Date,Time,Home,xG,Score,xG,Away,Attendance,Venue,Referee,Match Report,Notes
1,Fri,2021-08-06,21:00,Monaco,2.0,1-1,0.3,Nantes,7500,Stade Louis II.,Antony Gautier,Match Report,
1,Sat,2021-08-07,17:00,Lyon,1.4,1-1,0.8,Brest,29018,Groupama Stadium,Mikael Lesage,Match Report,
1,Sat,2021-08-07,21:00,Troyes,0.8,1-2,1.2,Paris S-G,15248,Stade de l'Aube,Amaury Delerue,Match Report,
1,Sun,2021-08-08,13:00,Rennes,0.6,1-1,2.0,Lens,22567,Roazhon Park,Bastien Dechepy,Match Report,

- The .csv format is very common and follows a specific structure:
 - Each line corresponds to a row (the first row typically contains column names).
 - For each row, values of each column are separated by commas.
- But how do we get it into our RStudio environment?

Import and Eyeball Data

- To import stuff in R we use read functions
 - They take the file directory as an input
 - And give the file content as an output
- The read function dedicated to .csv files is read.csv (later we will mostly use read_csv)
- Remember we use the arrow (<-) to create objects in R

1 data <- read.csv("/Users/jan/Downloads/ligue1.csv")</pre>

🕦 Important

Make sure you have the right path to your data file. Also, make sure you use correct backlashes "/". Do NOT use "\".

• Let's inspect this new object

• The first thing we can do is to use head() to print the *top rows*

1 head(data, 3)

	Wk	Day	Date	Time	Home	хG	Score	xG.1	Away	Attendance
1	1	Fri	2021-08-06	21:00	Monaco	2.0	1-1	0.3	Nantes	7500
2	1	Sat	2021-08-07	17:00	Lyon	1.4	1-1	0.8	Brest	29018
3	1	Sat	2021-08-07	21:00	Troyes	0.8	1-2	1.2	Paris S-G	15248
			Venue		Referee	e Mat	ch.Rep	port 1	Notes	
1	St	ade	Louis II.	Antony	Gautier	: Mat	ch Rep	port	NA	
2	Gro	oupar	na Stadium	Mikael	l Lesage	e Mat	ch Rep	port	NA	
3	St	ade	de l'Aube	Amaury	Delerue	e Mat	ch Rep	port	NA	

- tail() would print the bottom rows
- We can also run View (data) (a new tab will pop-up in your Source panel)

•	Wk [‡]	Day	Date [‡]	Time 🗘	Home 🗘	xG 🗘	Score 🗘	xG.1 🗘	Away ‡	Attendance ‡	¢ ♥	Referee ÷	Match.Report	Notes
1	1	Fri	2021-08-06	21:00	Monaco	2.0	1-1	0.3	Nantes	7500	Stade Louis II.	Antony Gautier	Match Report	NA
2	1	Sat	2021-08-07	17:00	Lyon	1.4	1-1	0.8	Brest	29018	Groupama Stadium	Mikael Lesage	Match Report	NA
3	1	Sat	2021-08-07	21:00	Troyes	0.8	1-2	1.2	Paris S-G	15248	Stade de l'Aube	Amaury Delerue	Match Report	NA
4	1	Sun	2021-08-08	13:00	Rennes	0.6	1-1	2.0	Lens	22567	Roazhon Park	Bastien Dechepy	Match Report	NA
5	1	Sun	2021-08-08	15:00	Bordeaux	0.7	0-2	3.3	Clermont Foot	18748	Stade Matmut-Atlantique	Florent Batta	Match Report	NA
6	1	Sun	2021-08-08	15:00	Strasbourg	0.4	0-2	0.9	Angers	23250	Stade de la Meinau	Jeremy Stinat	Match Report	NA
7	1	Sun	2021-08-08	15:00	Nice	0.8	0-0	0.2	Reims	18030	Stade de Nice	Johan Hamel	Match Report	NA
8	1	Sun	2021-08-08	15:00	Saint-Étienne	2.1	1-1	1.3	Lorient	20461	Stade Geoffroy-Guichard	Thomas Léonard	Match Report	NA
9	1	Sun	2021-08-08	17:00	Metz	0.7	3-3	1.4	Lille	15551	Stade Saint-Symphorien	Eric Wattellier	Match Report	NA
10	1	Sun	2021-08-08	20:45	Montpellier	0.5	2-3	2.0	Marseille	13500	Stade de la Mosson	Jérémie Pignard	Match Report	NA
11	2	P. Fri	2021-08-13	21:00	Lorient	0.8	1-0	0.9	Monaco	12149	Stade Yves Allainmat - Le Moustoir	Hakim Ben El Hadj Salem	Match Report	NA
12	2	Sat	2021-08-14	17:00	Lille	1.0	0-4	2.2	Nice	30144	Stade Pierre-Mauroy	JérÃ'me Brisard	Match Report	NA
13	2	Sat	2021-08-14	21:00	Paris S-G	2.5	4-2	0.6	Strasbourg	46962	Parc des Princes	Willy Delajod	Match Report	NA
14	2	Sun	2021-08-15	13:00	Angers	1.4	3-0	0.9	Lyon	6154	Stade Raymond Kopa	Clément Turpin	Match Report	NA
15	2	Sun	2021-08-15	15:00	Clermont Foot	2.3	2-0	0.5	Troyes	11005	Stade Gabriel Montpied	Romain Lissorgue	Match Report	NA
16	2	Sun	2021-08-15	15:00	Brest	1.5	1-1	0.9	Rennes	14271	Stade Francis-Le Blé	Benoît Bastien	Match Report	NA
17	2	Sun	2021-08-15	15:00	Nantes	1.4	2-0	1.1	Metz	12054	Stade de la Beaujoire - Louis Fonteneau	Johan Hamel	Match Report	NA

Seems like it worked!

•	Wk	Day	Date 🗘	Time 🗘	Home 🗘	xG ‡	Score 🗘	xG.1 🗘	Away ‡	Attendance 🗘	Venue 🗘	Referee ÷	Match.Report	Notes 🗘
1	1	Fri	2021-08-06	21:00	Monaco	2.0	1-1	0.3	Nantes	7500	Stade Louis II.	Antony Gautier	Match Report	NA
2	1	Sat	2021-08-07	17:00	Lyon	1.4	1-1	0.8	Brest	29018	Groupama Stadium	Mikael Lesage	Match Report	NA
3	1	Sat	2021-08-07	21:00	Troyes	0.8	1-2	1.2	Paris S-G	15248	Stade de l'Aube	Amaury Delerue	Match Report	NA
4	1	Sun	2021-08-08	13:00	Rennes	0.6	1-1	2.0	Lens	22567	Roazhon Park	Bastien Dechepy	Match Report	NA
5	1	Sun	2021-08-08	15:00	Bordeaux	0.7	0-2	3.3	Clermont Foot	18748	Stade Matmut-Atlantique	Florent Batta	Match Report	NA
6	1	Sun	2021-08-08	15:00	Strasbourg	0.4	0-2	0.9	Angers	23250	Stade de la Meinau	Jeremy Stinat	Match Report	NA
7	1	Sun	2021-08-08	15:00	Nice	0.8	0-0	0.2	Reims	18030	Stade de Nice	Johan Hamel	Match Report	NA
8	1	Sun	2021-08-08	15:00	Saint-Étienne	2.1	1-1	1.3	Lorient	20461	Stade Geoffroy-Guichard	Thomas Léonard	Match Report	NA
9	1	Sun	2021-08-08	17:00	Metz	0.7	3-3	1.4	Lille	15551	Stade Saint-Symphorien	Eric Wattellier	Match Report	NA
10	1	Sun	2021-08-08	20:45	Montpellier	0.5	2-3	2.0	Marseille	13500	Stade de la Mosson	Jérémie Pignard	Match Report	NA
11	2	? Fri	2021-08-13	21:00	Lorient	0.8	1-0	0.9	Monaco	12149	Stade Yves Allainmat - Le Moustoir	Hakim Ben El Hadj Salem	Match Report	NA
12	2	2 Sat	2021-08-14	17:00	Lille	1.0	0-4	2.2	Nice	30144	Stade Pierre-Mauroy	JérÃ'me Brisard	Match Report	NA
13	2	2 Sat	2021-08-14	21:00	Paris S-G	2.5	4-2	0.6	Strasbourg	46962	Parc des Princes	Willy Delajod	Match Report	NA
14	2	2 Sun	2021-08-15	13:00	Angers	1.4	3-0	0.9	Lyon	6154	Stade Raymond Kopa	Clément Turpin	Match Report	NA
15	2	2 Sun	2021-08-15	15:00	Clermont Foot	2.3	2-0	0.5	Troyes	11005	Stade Gabriel Montpied	Romain Lissorgue	Match Report	NA
16	2	2 Sun	2021-08-15	15:00	Brest	1.5	1-1	0.9	Rennes	14271	Stade Francis-Le Blé	Benoît Bastien	Match Report	NA
17	2	2 Sun	2021-08-15	15:00	Nantes	1.4	2-0	1.1	Metz	12054	Stade de la Beaujoire - Louis Fonteneau	Johan Hamel	Match Report	NA

Or kind of worked...

These kind of weird characters pop up when there is an encoding issue

- Thankfully, read.csv() has many options that can be set as inputs, including encoding!
- Usually the UTF-8 encoding is the solution to French characters

1 data <- read.csv("/Users/jan/Downloads/ligue1.csv", encoding = "UTF-8")</pre>

When you will be facing similar issues, check out the arguments of read.csv() by typing ?read.csv

Arguments	
file	the name of the file which the data are to be read from. Each row of the table appears as one line of the file. If it does not contain an absolute path, the file name is relative to the current working directory, getwd(). Tilde-expansion is performed where supported. This can be a compressed file (see <u>file</u>).
	Alternatively, file can be a readable text-mode <u>connection</u> (which will be opened for reading if necessary, and if so <u>close</u> d (and hence destroyed) at the end of the function call). (If <u>stdin</u> () is used, the prompts for lines may be somewhat confusing. Terminate input with a blank line or an EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows. Any pushback on stdin() will be cleared before return.)
	file can also be a complete URL. (For the supported URL schemes, see the 'URLs' section of the help for <u>url</u> .)
header	a logical value indicating whether the file contains the names of the variables as its first line. If missing, the value is determined from the file format: header is set to TRUE if and only if the first row contains one fewer field than the number of columns.
зер	the field separator character. Values on each line of the file are separated by this character. If sep = "" (the default for read.table) the separator is 'white space', that is one or more spaces, tabs, newlines or carriage returns.
quote	the set of quoting characters. To disable quoting altogether, use quote = "". See <u>scan</u> for the behaviour on quotes embedded in quotes. Quoting is only considered for columns read as character, which is all of them unless colClasses is specified.
dec	the character used in the file for decimal points.

Overview

1. Getting Started

- About R
- The R Studio IDE
- Import and eyeball data

2. Anatomy of a data.frame

- Data structure
- Classes
- Vectors
- Subsetting

Anatomy of a data.frame

 Now that we imported the data properly, we can check out its str() ucture in more details

1 str(data)

• Don't be scared of the output!

1 str(data)

'data.frame':	3	80 ob	os. of 14 variables:
\$ Wk	:	int	1 1 1 1 1 1 1 1 1
\$ Day	:	chr	"Fri" "Sat" "Sat" "Sun"
\$ Date	:	chr	"2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08"
\$ Time	:	chr	"21:00" "17:00" "21:00" "13:00"
\$ Home	:	chr	"Monaco" "Lyon" "Troyes" "Rennes"
\$ xG	:	num	2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5
\$ Score	:	chr	"1-1" $"1-1"$ $"1-2"$ $"1-1"$
\$ xG.1	:	num	0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2
\$ Away	:	chr	"Nantes" "Brest" "Paris S-G" "Lens"
<pre>\$ Attendance</pre>	:	int	7500 29018 15248 22567 18748 23250 18030 20461 15551 13500
\$ Venue	:	chr	"Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park"
\$ Referee	:	chr	"Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy"
<pre>\$ Match.Report</pre>	t:	chr	"Match Report" "Match Report" "Match Report" "Match Report"
\$ Notes	:	logi	NA NA NA NA NA

• str() says that data is a data. frame, and gives its numbers of observations (rows) and variables (columns)

1 str(data)	
1 ## 'data.frame':	380 obs. of 14 variables:

• It also gives the variables names

1	str	(data)
1	##	'data.frame': 380 obs. of 14 variables:
2	##	\$ Wk
3	##	\$ Day
4	##	\$ Date
5	##	\$ Time
6	##	\$ Home
7	##	\$ xG
8	##	\$ Score
9	##	\$ xG.1
10	##	\$ Away
11	##	\$ Attendance
12	##	\$ Venue
13	##	\$ Referee
14	##	\$ Match.Report
15	##	\$ Notes

• The first values of each variable

1 str(data)

	1	##	'data.frame':	380	obs. of 14 variables:
	2	##	\$ Wk	•	1 1 1 1 1 1 1 1 1
	3	##	\$ Day	•	"Fri" "Sat" "Sat" "Sun"
	4	##	\$ Date	•	"2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08"
	5	##	\$ Time	•	"21:00" "17:00" "21:00" "13:00"
	6	##	\$ Home	:	"Monaco" "Lyon" "Troyes" "Rennes"
	7	##	\$ xG	:	2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5
	8	##	\$ Score	•	"1-1""1-2""1-1"
	9	##	\$ xG.1	:	0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2
1	10	##	\$ Away	•	"Nantes" "Brest" "Paris S-G" "Lens"
1	11	##	<i>\$ Attendance</i>	•	7500 29018 15248 22567 18748 23250 18030 20461 15551 13500
	12	##	\$ Venue	:	"Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park"
	13	##	\$ Referee	:	"Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy"
	14	##	<pre>\$ Match.Repor</pre>	t:	"Match Report" "Match Report" "Match Report" "Match Report"
	15	##	\$ Notes	•	NA NA NA NA NA

• As well as the **class** of each variable

1 str(data) 380 obs. of 14 variables: 'data.frame': 1 ## 2 ## Ś Wk : int 111111111... \$ Day "Fri" "Sat" "Sat" "Sun" ... 3 ## : chr \$ Date : chr "2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08" ... ## 4 \$ Time 5 ## : chr "21:00" "17:00" "21:00" "13:00" ... "Monaco" "Lyon" "Troyes" "Rennes" ... ## \$ Home : chr 6 ## \$ xG 2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5 ... 7 : num "1-1" "1-1" "1-2" "1-1" ... ## \$ Score : chr 8 ## \$ xG.1 0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2 ... 9 : num "Nantes" "Brest" "Paris S-G" "Lens" ... 10 ## \$ Away : chr ## *\$* Attendance : int 7500 29018 15248 22567 18748 23250 18030 20461 15551 13500 ... 11 "Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park" ... 12 ## \$ Venue : chr "Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy" ... 13 ## \$ Referee : chr "Match Report" "Match Report" "Match Report" "Match Report" ... 14 ## *\$ Match.Report: chr* 15 ## \$ Notes : logi NA NA NA NA NA NA ...

• But what does the **class** correspond to?

1	str	(data)		
1	##	'data.frame':	380 obs. of 14 variables:	
2	##	\$ Wk	int ?	
3	##	\$ Day	chr ?	
4	##	\$ Date	chr ?	
5	##	\$ Time	chr ?	
6	##	\$ Home	chr ?	
7	##	\$ xG	num ?	
8	##	\$ Score	chr ?	
9	##	\$ xG.1	num ?	
10	##	\$ Away	chr ?	
11	##	<i>\$</i> Attendance	int ?	
12	##	\$ Venue	chr ?	
13	##	\$ Referee	chr ?	
14	##	\$ Match.Report	chr ?	
15	##	\$ Notes	logi ?	

Numeric

These are simply numbers:

1 class(3)

[1] "numeric"

1 class(-1.89278)

- [1] "numeric"
- Numeric variable classes include:
 - Int for round numbers
 - dbl for 2-decimal numbers

Character

They must be surrounded by " or ':

1 class("Paris Saint-Germain")

[1] "character"

- 1 class("35")
 [1] "character"
- We also call these values:
 - Character strings
 - Or just strings

Logical

Something either TRUE of FALSE:

1	2	$\geq =$	Δ	
±	5	/ _	-	

[1] FALSE

- 1 class(3 >= 4)
- [1] "logical"

1 class(TRUE)

[1] "logical"

Operator	Meaning
==	Equal to
>	Greater than
<	Less than
>=	Greater than or equal to
<=	Less than or equal to
&	And
	Or
!	Opposite

Guess the output!

```
1 as.numeric("2022")
```

[1] 2022

What about this one?

1 as.character(2022-2023)

[1] "-1"

And a final one.

1 as.character(2022>2023)

[1] "FALSE"

	numeric	character	logical
as.numeric()	No effect	Converts strings of numbers into numeric values Returns NA if characters in the string	Returns 1 if TRUE Returns 0 if FALSE
as.character()	Converts numeric values into strings of numbers	No effect	Returns "TRUE" if TRUE Returns "FALSE" if FALSE
as.logical()	Returns TRUE if != 0 Returns FALSE if 0	Returns TRUE if "T" or"TRUE" Returns FALSE if "F" or "FALSE" Returns NA otherwise	No effect

NA stands for 'Not Available', it corresponds to a missing value

One last mystery...

1 str(data)

'data.frame':	380 o	bs. of 14 variables:
\$ Wk	: int	1 1 1 1 1 1 1 1 1
\$ Day	: chr	"Fri" "Sat" "Sat" "Sun"
\$ Date	: chr	"2021-08-06" "2021-08-07" "2021-08-07" "2021-08-08"
\$ Time	: chr	"21:00" "17:00" "21:00" "13:00"
\$ Home	: chr	"Monaco" "Lyon" "Troyes" "Rennes"
\$ xG	: num	2 1.4 0.8 0.6 0.7 0.4 0.8 2.1 0.7 0.5
\$ Score	: chr	1-1 $1-1$ $1-2$ $1-1$
\$ xG.1	: num	0.3 0.8 1.2 2 3.3 0.9 0.2 1.3 1.4 2
\$ Away	: chr	"Nantes" "Brest" "Paris S-G" "Lens"
<pre>\$ Attendance</pre>	: int	7500 29018 15248 22567 18748 23250 18030 20461 15551 13500
\$ Venue	: chr	"Stade Louis II." "Groupama Stadium" "Stade de l'Aube" "Roazhon Park"
<pre>\$ Referee</pre>	: chr	"Antony Gautier" "Mikael Lesage" "Amaury Delerue" "Bastien Dechepy"
<pre>\$ Match.Report</pre>	t: chr	"Match Report" "Match Report" "Match Report" "Match Report"
\$ Notes	: logi	NA NA NA NA NA

Are these dollar signs here for a reason?

1	str	data)
1	##	data.frame': 380 obs. of 14 variables:
2	##	\$ Wk
3	##	\$ Day
4	##	\$ Date
5	##	\$ Time
6	##	\$ Home
7	##	\$ xG
8	##	\$ Score
9	##	\$ xG.1
10	##	\$ Away
11	##	\$ Attendance
12	##	\$ Venue
13	##	\$ Referee
14	##	\$ Match.Report
15	##	\$ Notes

Vectors

It's actually just a reference to the fact that \$ allows to **extract a variable** from a dataset

1 data\$Home						
[1]	"Monaco"	"Lyon"	"Troyes"	"Rennes"		
[5]	"Bordeaux"	"Strasbourg"	"Nice"	"Saint-Étienne"		
[9]	"Metz"	"Montpellier"	"Lorient"	"Lille"		
[13]	"Paris S-G"	"Angers"	"Clermont Foot"	"Brest"		
[17]	"Nantes"	"Reims"	"Lens"	"Marseille"		
[21]	"Brest"	"Monaco"	"Saint-Étienne"	"Lyon"		
[25]	"Strasbourg"	"Metz"	"Montpellier"	"Bordeaux"		
[29]	"Rennes"	"Nantes"	"Nice"	"Marseille"		
[33]	"Troyes"	"Strasbourg"	"Angers"	"Lens"		
[37]	"Clermont Foot"	"Lille"	"Reims"	"Lorient"		
[41]	"Paris S-G"	"Monaco"	"Montpellier"	"Rennes"		
[45]	"Bordeaux"	"Brest"	"Metz"	"Nantes"		
[49]	"Lyon"	"Strasbourg"	"Lens"	"Saint-Étienne"		
[53]	"Nice"	"Troyes"	"Clermont Foot"	"Reims"		
[57]	"Angers"	"Marseille"	"Paris S-G"	"Rennes"		
[61]	"Nantes"	"Lille"	"Montpellier"	"Monaco"		
[65]	"Lyon"	"Lens"	"Lorient"	"Angers"		
[69]	"Metz"	"Saint-Étienne"	"Strasbourg"	"Paris S-G"		
[73]	"Lyon"	"Bordeaux"	"Troyes"	"Brest"		
[77]	"Reims"	"Clermont Foot"	"Marseille"	"Lens"		
[81]	"Montpellier"	"Nice"	"Rennes"	"Lorient"		
[85]	"Monaco"	"Angers"	"Nantes"	"Lille"		
1001	"Coint Étionno"	"Daria C C"	"Clarmont East"	"T trop"		

Vectors

- Variables are basically objects that we call vectors
 - Vectors are sequences of values that have the same class
 - R won't let you create a vector containing elements of different classes

We make our own vectors using the c() oncatenate function

```
1 some_vector <- c("Hello world", 35, FALSE)
2 some_vector</pre>
```

```
[1] "Hello world" "35" "FALSE"
```

Note that R will coerce the different elements into the same class when we create a vector (in this case character)

1 class(some_vector)

```
[1] "character"
```

• The fact that vectors are homogeneous in class allows that operations apply to all their elements

1 c(1, 2, 3) / 3

[1] 0.3333333 0.66666667 1.0000000

1 3 / c(1, 2, 3)

Subsetting

- With \$, you can extract a single variable from a dataset
- You can extract several variables and specific observations from a data frame using
 []

- Inside the brackets, indicate what you want to keep using:
 - Indices: e.g., the third column has index 3
 - Logical: A vector of TRUE and FALSE
 - Names: They must be in quotation marks

data[row(s), column(s)]

Example:

```
1 data[1, c("Venue", "Attendance")]
```

Venue Attendance 1 Stade Louis II. 7500

We can also subset single vectors:

```
1 vector <- c(3, 2, 1)
2 vector[c(TRUE, TRUE, FALSE)]</pre>
```

[1] 3 2

Practice

- 1. Download and import the dataset if you haven't already
- 2. Combine the use of [] and the function nrow() to obtain the last value of the Wk variable
- 3. Subset the home team, the score, and the away team for matches that occured during the last week

💙 Tip

Instead of str(), you can use the names () function to display all the variable names of a data frame.

Solution

1. Download and import the dataset if you haven't already

```
1 data <- read.csv("/Users/jan/Downloads/ligue1.csv")</pre>
```

2. Combine the use of [] and the function nrow() to obtain the last value of the Wk variable.

```
1 last_week <- data[nrow(data), "Wk"]</pre>
```

2 last_week

[1] 38

3. Subset the home team, the score, and the away team for matches that occured during the last week

1 names(data)					
[1] "Wk" [6] "xG" [11] "Venue"	"Day" "Score" "Referee"	"Date" "xG.1" "Match.Repo	"Time" "Away" ort" "Notes"	"Home" "Attendance"	
1 data[Wk ==	last_week, c("Hor	me", "Score",	"Away")]		

Error: object 'Wk' not found

- Oops! Seems like R couldn't find the Wk variable
 - R was looking for Wk in our environment
 - But there is no Wk there
- We must refer to the data frame data which is in our environment
 - Then we can access Wk using the \$ symbol

1	data[data\$Wk	== las	t_week, c("Home",	"Score", "Away")]
	Home	Score	Away	
371	Lille	2-2	Rennes	
372	Brest	2-4	Bordeaux	
373	Nantes	1-1	Saint-Étienne	
374	Clermont Foot	1-2	Lyon	
375	Angers	2-0	Montpellier	
376	Lorient	1-1	Troyes	
377	Paris S-G	5-0	Metz	
378	Reims	2-3	Nice	

Overview

1. Getting Started

- About R
- The R Studio IDE
- Import and eyeball data
- 2. Anatomy of a data.frame
 - Data structure
 - Classes
 - Vectors
 - Subsetting
- 3. Wrap Up
 - Summary and key take-aways

Wrap Up Import data

1 data <- read.csv("/Users/jan/Downloads/ligue1.csv")</pre>

Class

1 is.numeric("1.6180339") # What would be the output?

[1] FALSE

Subsetting

1 data\$Home[3] # What would be the output?

[1] "Troyes"

Overview

1. Getting Started

- About R
- The R Studio IDE
- Import and eyeball data
- 2. Anatomy of a data.frame
 - Data structure
 - Classes
 - Vectors
 - Subsetting
- 3. Wrap Up
 - Summary and key take-aways

4. Markdown and universal writing

- Office Model vs. Engineering Model
- Excel failures
- Markdown

Markdown and universal writing

Writing up research is a complicated, messy process!

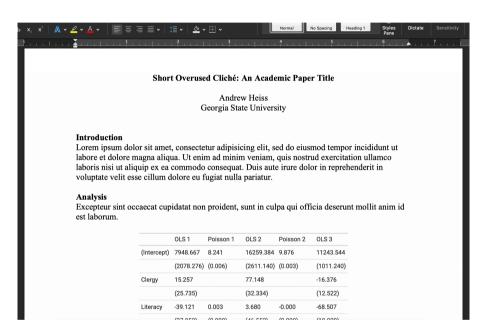
- Loads of puzzle pieces:
 - Data
 - Statistical results
 - Fieldwork
 - Analysis
 - Figures
 - Tables
 - Citations
 - Text
- Each of these comes from a different place

Two general approaches for this mess:

The Office model

• Manually put everything in one document (and repeat often)

The Engineering model


• Work with the raw pieces and compile it all in the end

The Office Model

Everything lives in one . docx file

- Drag images in
- Copy/paste stats from R
- Connect Word to Zotero or Endnote
- Track versions with filenames:
 - ms.docx,ms2_final.docx, ms2_final_final.docx

Final output = **.** docx file

The Engineering Model

Everything lives separately and is combined in the end

- Type text in a plain text document
- Import images automatically
- Import stats automatically from R scripts
 (.R or .qmd) or .do files
- Store citations in reference manager
- Track versions with git

Final output = whatever you want (Word, PDF, HTML)

· ∠ • ▲ • │ ☰ ☰		i · · 🗠 ·	.⊞ •		Normal	No Spacing Head	ling 1 Styles Pane	5 Dictate	Sensitiv
 		2	3		4	5		🍝	7
	Shor	t Overuse	d Cliché:	An Acade	mic Pape	r Title			
					-				
		G	Andre eorgia Sta	w Heiss te Univers	itv				
					,				
Introduction									
Lorem ipsum do	lor sit amet	. consecte	tur adipisi	cing elit, s	ed do eius	mod tempor i	ncididunt u	ıt	
labore et dolore									
laboris nisi ut ali									
voluptate velit es	se cillum d	lolore eu f	ugiat nulla	ı pariatur.					
Analysis									
Analysis Excepteur sint or	caecat cup	idatat non	proident,	sunt in cul	pa qui offi	cia deserunt	mollit anim	ı id	
	ccaecat cup	idatat non	proident,	sunt in cul	pa qui offi	cia deserunt	mollit anim	ı id	
Excepteur sint of	ccaecat cup		. ,				mollit anim	ıid	
Excepteur sint of	ccaecat cup	idatat non OLS 1	proident, Poisson 1	sunt in cul	pa qui offi Poisson 2	Cia deserunt	mollit anim	ı id	
Excepteur sint of	(Intercept)	OLS 1	. ,		Poisson 2		mollit anim	ı id	
Excepteur sint of		OLS 1	Poisson 1 8.241	OLS 2	Poisson 2 9.876	OLS 3	mollit anim	ı id	
Excepteur sint of		OLS 1 7948.667	Poisson 1 8.241	OLS 2 16259.384	Poisson 2 9.876	OLS 3 11243.544	mollit anim	ı id	
Excepteur sint of	(Intercept)	OLS 1 7948.667 (2078.276)	Poisson 1 8.241	OLS 2 16259.384 (2611.140)	Poisson 2 9.876	OLS 3 11243.544 (1011.240)	mollit anim	ıid	
Excepteur sint of	(Intercept)	OLS 1 7948.667 (2078.276) 15.257	Poisson 1 8.241	OLS 2 16259.384 (2611.140) 77.148	Poisson 2 9.876	OLS 3 11243.544 (1011.240) -16.376	mollit anim	ı id	

There is no one right way!

The Office model

Cons:

- With changing analyses or data, manually updating your doc is laborous
- Chaos-prone:
 - You got to remember which script generated what)
- Error-prone:
 - It is easy to forget to update all figures, tables, results in text, etc.

The **Engineering** model

Cons:

- A bit of an entry cost
 - Need to learn a new coding language
- You'll always work with people who only use Word

The **Office** model

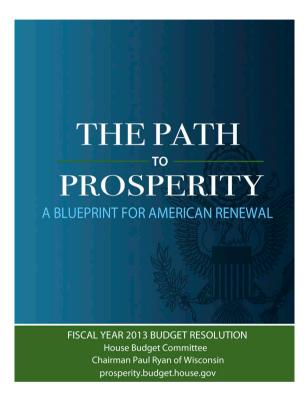
Pros:

- No coding, easy environments
- The whole world runs on Word

The Engineering model

Pros:

- Less cognitive load
 - While everything seems complex in the beginning, no chaos because all is documented and transparent
- Less work load (in the long run)
 - No need to copy/paste new results, add updated figures, reformat citation, etc.
- Transparency
 - There's a record of everything you do
 - Your findings are reproducible by anyone (and yourself!)


Excel failures

Growth in a Time of Debt Carmen M. Reinhart and Kenneth S. Rogoff NBER Working Paper No. 15639 January 2010, Revised January 2010 JEL No. E2,E3,E6,F3,F4,N10

ABSTRACT

We study economic growth and inflation at different levels of government and external debt. Our analysis is based on new data on forty-four countries spanning about two hundred years. The dataset incorporates over 3,700 annual observations covering a wide range of political systems, institutions, exchange rate arrangements, and historic circumstances. Our main findings are: First, the relationship between government debt and real GDP growth is weak for debt/GDP ratios below a threshold of 90 percent of GDP. Above 90 percent, median growth rates fall by one percent, and average growth falls considerably more. We find that the threshold for public debt is similar in advanced and emerging economies. Second, emerging markets face lower thresholds for external debt (public and private)—which is usually denominated in a foreign currency. When external debt reaches 60 percent of GDP, annual growth declines by about two percent; for higher levels, growth rates are roughly cut in half. Third, there is no apparent contemporaneous link between inflation and public debt levels for the advanced countries as a group (some countries, such as the United States, have experienced higher inflation when debt/GDP is high). The story is entirely different for emerging markets, where inflation rises sharply as debt increases.

Dept:GDP ratio 90%+ \rightarrow -0.1% growth

Paul Ryan's 2013 House budget resolution

Excel failures

Thomas Herndon

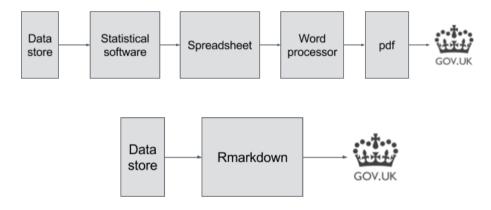
Over time, another problem emerged: Other researchers, using seemingly comparable data on debt and growth, couldn't replicate the Reinhart-Rogoff results. They typically found some correlation between high debt and slow growth — but nothing that looked like a tipping point at 90 percent or, indeed, any particular level of debt.

Finally, Ms. Reinhart and Mr. Rogoff allowed researchers at the University of Massachusetts to look at their original spreadsheet — and the mystery of the irreproducible results was solved. First, they omitted some data; second, they used unusual and highly questionable statistical procedures; and finally, yes, they made an Excel coding error. Correct these oddities and errors, and you get what other researchers have found: some correlation between high debt and slow growth, with no indication of which is causing which, but no sign at all of that 90 percent "threshold."

From Paul Krugman, "The Excel Depression"

Engineering model in real life

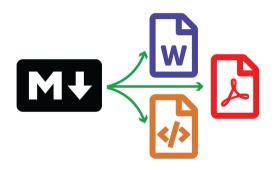
Private companies and governments use the engineering model to write reports on data


3.1.2 Data Visualization

We use ggplot2 as our main package to create ad-hoc exploratory graphics as well as polished-looking customized visualizations. When combined with tools to clean and transform data, ggplot2 allows analysts to quickly translate insights into high quality, compelling visualizations. In addition to the static graphics of ggplot2, we often make interactive visualizations or dashboards using R packages such as plotly (Sievert et al. 2017), leaflet (Cheng et al. 2017), dygraphs (Vanderkam et al. 2017), DiagrammeR (Sveidqvist et al. 2017), and shiny (Chang et al. 2017).

3.1.3 Reproducible Research

At Airbnb, all R analyses are documented in **rmarkdown**, where code and visualizations are combined within a single written report. Posts are carefully reviewed by experts in the content area and techniques used, both in terms of methodologies and code style, before publishing and sharing with the business partners. The peer review process is


Airbnb

The UK's reproducible analysis pipeline

So, what is Markdown?

- There are many different typesetting languages in which you can write.
- The most widely used ones are perhaps LaTeX (mostly scientific work), HTML (webbased stuff) and Word.
- How to get around learning all of them and having to switch for different outputs?
 - Write in one simplified syntax (Markdown)
 - Convert to whatever output you want

And what is RMarkdown/Quarto?

- Quarto and RMarkdown are publishing systems which use markdown language.
- They allow you to render to different outcome formats

```
1 # To HTML
2 quarto render manuscript.qmd --to html
3
4 # To Word
5 quarto render manuscript.qmd --to docx
6
7 # To PDF (through LaTeX)
8 quarto render manuscript.qmd --to pdf
```

• They allow to combine code, figures, tables, images, text etc. (more on that now)

Overview

1. Getting Started

- About R
- The R Studio IDE
- Import and eyeball data
- Use functions

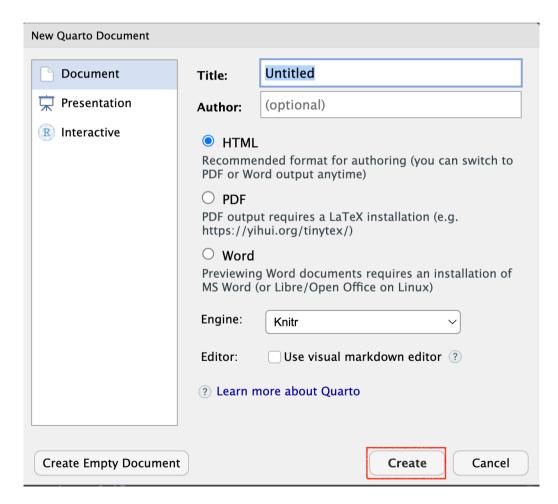
2. Anatomy of a data.frame

- Data structure
- Classes
- Vectors
- Subsetting
- 3. Wrap Up
 - Summary and key take-aways

- 4. Markdown and universal writing
 - Office Model vs. Engineering Model
 - Excel failures
 - Markdown

5. Writing reports in Quarto

- What is Quarto?
- YAML header
- Code chunks
- Text formatting
- Run and render your code
- Inline code
- Tables
- Preset themes
- Report parameters

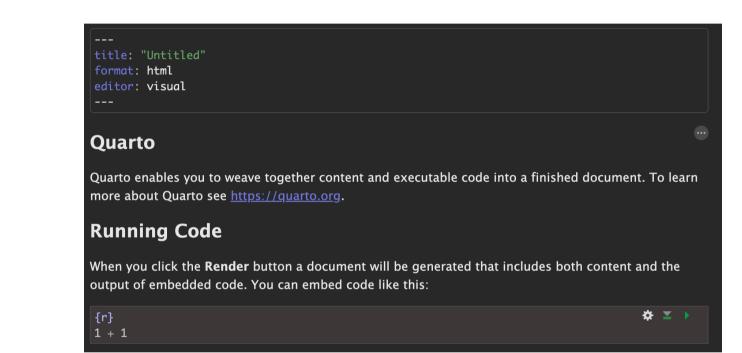

Writing reports in Quarto

What is Quarto?

- Quarto is an open-source publishing system in which you can both write/run code (R/Python/Julia/Observable) and edit text
- Quarto is the newer, fancier version of RMarkdown (which only worked with R code)
- It is structured around 3 types of content:
 - Code chunks to run and render the output
 - Editable text to display
 - YAML metadata for the Quarto build process

What is Quarto?

- Let's create our first Quarto document!
- Click on File > New File > Quarto document


What is Quarto?

It creates a template containing the 3 types of content:

YAML header

Text

Code Chunk

Basic principles YAML Header

- The YAML header contains general information related to the file configuration:
 - Title/subtitle (in quotes)
 - Author/date (in quotes)
 - Output type (html/pdf)
 - Editor configuration (use source, not visual)
 - ...
- It should be specified at the very beginning of the document and surrounded by three dashes like this:

```
1 ---
2 title: "My first Quarto document"
3 subtitle: "What a blast"
4 author: "My Name"
5 date: "05/01/2024"
6 format: html
7 editor: source
```

Basic principles

Code Chunks

- Code chunks are blocks of R code that can be run when working on and rendering the .qmd file
- You can insert a code chunk using Ctrl + Alt + i or by typing the backticks chunk delimiters as follows

1 1 + 1

- When rendering the document, R will execute the code
 - Both the code and the output will appear in the document like so

1 1 + 1

[1] 2

Basic principles Code Chunks

- The content to be displayed from the code chunk can be specified in chunk options
 - For instance, to display only the output and not the code chunk, you can set echo to FALSE

```
1 ```{r, echo = F}
2 1+1
3 ```
```

1	```{r}
2	# echo: false
3	1+1
4	~~~

• And the output will only be

[1] 2

• Instead of

```
1 1 + 1
[1] 2
```

Basic principles Code Chunks

Chunk Options to Know

Option	Default	Effect
eval TRUE		Whether to evaluate the code and include its results
echo	TRUE	Whether to display code along with its results
warning	TRUE	Whether to display warnings
error	TRUE	Whether to display errors
message	TRUE	Whether to display messages
results	'markup'	'hide' to hide the output
fig.width	7	Width in inches for plots created in chunk
fig.height	7	Height in inches for plots created in chunk

Basic principles

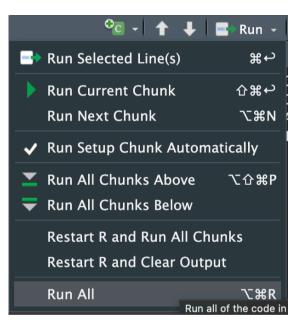
Code Chunks

• For an option to be the default for the whole document, set it up in the YAML header:

```
1 ---
2 title: "My first Quarto document"
3 format: html
4 execute:
5 echo: false
6 warning: false
7 ---
```

Basic principles Text Formatting

- Quarto is not only about rendering code but also about writing actual text
- You can write paragraphs as you would normally do on a typical report
- And Quarto provides convenient ways to format your text
- Unlike most text editing software, in source Quarto text formatting isn't about clicking on dedicated buttonds
- It relies on symbols that should be written along with the text


Basic principles

Text Formatting

Туре	to get
 Some text in a paragraph. More text in the next paragraph. Always use empty lines between paragraphs. 	Some text in a paragraph. More text in the next paragraph. Always use empty lines between paragraphs.
<pre>*Italic* or _Italic_</pre>	Italic
Bold orBold	Bold
# Heading 1	Heading 1
## Heading 2	Heading 2
### Heading 3	Heading 3
(Go up to heading level 6 with ######)	
<pre>[Link text](https://www.example.com)</pre>	Link text

Basic principles Run and render your code

- You have different options to execute the content of a code chunk in Quarto
 - Check out the buttons at the top right of the chunk

• To render a Quarto file, click on the render button

Useful features

Inline code

- Quarto allows to include R output directly in text
- To do this, use `r r_code_here`

```
1 ```{r}
2 #| label: find-avg-mpg
3 #| echo: false
4 number_of_days <- 5
5 ```
6
7 We are `r number_of_days` days into the week.</pre>
```

... would render to this:

We are 5 days into the week.

That's it for today :)