
Statistical Inference
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Overview
1. Population vs. Sample

2. Inventing Null Worlds

3. The Central Limit theorem

4. Theoretical Distributions
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Population vs. Sample
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Why do we do statistics ?
To make inferences about a population based on observing only a sample
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Are action movies better higher than
comedies?
Data → Calculation → Estimate → Truth

Category Description Notation

Data IMDB ratings

Calculation Average action rating −
average comedy rating

Estimate  in a sample of movies

Truth Difference in rating for
all movies

D
= −D̄ ∑ DAction

N
∑ DComedy

N

D̄ δ ̂ 
δ
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Greek, Latin, and extra markings
Greek

Letters like  are the truth

Letters with extra markings like  are
our estimate of the truth based on our
sample

Latin

Letters like  are actual data from our
sample

Letters with extra markings like  are
calculations from our sample

δ
δ ̂ 

D

D̄
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Your turn #1: Calculating an estimate
Collect IMDB ratings for a bunch of films via the ggplot2movies package.

1. Install the package (use either console or the Rstudio interface. Do not use a Script)

2. Load the package in your script.

3. Load the movies data (type: data("movies"))

4. Make a new cleaned data frame by

selecting only the title, year, rating, Action and Comedy columns

filtering out films that classify as both Action and Comedy

making a new variable genre (using mutate() and case_when()) which takes
the values “Action” or “Comedy”

removing the now obsolete Action and Comedy columns (use select and -)

5. Calculate the average ratings for the two genres
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So, are action movies better than
comedies?
# A tibble: 2 × 2
  genre  avg_rating
  <fct>       <dbl>
1 Action       5.24
2 Comedy       5.97

= = 5.24 − 5.97 = −0.73δ ̂  D̄

Action movies seem to be slightly worse. But…

We don’t know if the estimate we found in this sample is actually true for the
population of all films
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Inventing Null Worlds
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Simulated Null World
Let’s try to imagine a world with no differences between action and comedy movies

We simulate data with ratings for 1’000’000 movies where there is no difference
(the true  is 0). Imagine that’s the population, i.e. all movies ever made.δ

set.seed(1234) # For reproducibility1
2

imaginary_movies <- tibble(3
  movie_id = 1:1000000,4
  rating = sample(seq(1, 10, by = 0.1), size = 1000000, replace = TRUE),5
  genre = sample(c("Comedy", "Action"), size = 1000000, replace = TRUE)6
)7
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Simulated Null World
Our simulated action movies and comedies don’t all have the same rating, but on
average there’s (almost) no difference

imaginary_movies |> 1
  group_by(genre) |> 2
  summarize(avg_rating = mean(rating)) 3

# A tibble: 2 × 2
  genre  avg_rating
  <chr>       <dbl>
1 Action       5.51
2 Comedy       5.50

ggplot(imaginary_movies, 1
       aes(x = rating, fill = genre)) +2
  geom_bar(alpha = 0.4, position = "identity") +3
  scale_x_continuous(breaks = seq(1,10))4
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Sampling & Estimating in the Null world
In the actual IMDB data, we looked at a sample of about 20’000 films.

We can randomly pick a sample of that same size from our simulated population

# draw a sample of 20'000 films1
imaginary_sample <- imaginary_movies |> 2
  sample_n(20000)3

In this sample, we actually find a small difference

# compute rating difference in the sample1
estimate <- imaginary_sample |> 2
  group_by(genre) |> 3
  summarize(avg_rating = mean(rating)) |> 4
  summarise(diff = avg_rating[genre == "Action"] - avg_rating[genre == "Comedy"]) %>%5
  pull(diff)6

7
estimate8

[1] -0.03535811
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Let’s repeat this process of sampling and estimating 1000 times, and store the results.

n_simulations <- 10001
differences <- c() # make an empty vector2

3
for (i in 1:n_simulations) {4
  # draw a sample of 20'000 films5
  imaginary_sample <- imaginary_movies |> 6
    sample_n(20000)7
  # compute rating difference in the sample8
  estimate <- imaginary_sample |> 9
    group_by(genre) |> 10
    summarize(avg_rating = mean(rating)) |> 11
    summarise(diff = avg_rating[genre == "Action"] - avg_rating[genre == "Comedy"]) %>%12
    pull(diff)13
  14
  differences[i] <- estimate15
}16
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We can plot the results for an overview

n_simulations <- 10001
differences <- c() # make an empty vector2

3
for (i in 1:n_simulations) {4
  # draw a sample of 20'000 films5
  imaginary_sample <- imaginary_movies |> 6
    sample_n(20000)7
  # compute rating difference in the sample8
  estimate <- imaginary_sample |> 9
    group_by(genre) |> 10
    summarize(avg_rating = mean(rating)) |> 11
    summarise(diff = avg_rating[genre == "Action"] - avg_rating[genre == "Comedy"]) %>%12
    pull(diff)13
  14
  differences[i] <- estimate15
}16

ggplot(data.frame(differences), aes(x = differences)) +1
  geom_histogram() +2
  labs(title = "Distribution of Rating Differences",3
       x = "Mean Rating Difference (Action - Comedy)",4
       y = "Frequency") +5
  theme_minimal()6
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Check  in the null world
Does the estimate we found in the IMDB data (  = -0.73) fit well into the world where
the true difference  is 0?

δ ̂ 
δ ̂ 

δ
ggplot(data.frame(differences), aes(x = differences)) +1
  geom_histogram() +2
  labs(title = "Distribution of Rating Differences",3
       x = "Mean Rating Difference (Action - Comedy)",4
       y = "Frequency") +5
  theme_minimal()6
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Check  in the null world
Does the estimate we found in the IMDB data (  = -0.73) fit well into the world where
the true difference  is 0?

That seems fairly rare for a null world!

δ ̂ 
δ ̂ 

δ
ggplot(data.frame(differences), aes(x = differences)) +1
  geom_histogram() +2
  geom_vline(xintercept = -0.73, color = "red", size = 1, linetype = "dashed") +3
  labs(title = "Distribution of Rating Differences",4
       x = "Mean Rating Difference (Action - Comedy)",5
       y = "Frequency") +6
  theme_minimal()7
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So, again, are action movies better than
comedies?

We can now pretty confidently say that in a world where there is no difference,
observing what we observed is super unlikely.

Therefore, we’re pretty confident that in fact there is a difference.

(We still don’t know what the true difference is, but at least we can say it’s unlikely
to be 0)

 Congratulations, if you got that, you got the whole intuition behind hypothesis
testing.
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All this is good, but how (un)likely exactly is it to observe our  in the null world?δ ̂ 
That is where the central limit theorem and theoretical distributions come into play…
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The central limit theorem
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You have seen before the
estimated mean differences of
our imaginary samples (the ),
somehow magically, form a curve
that is…

bell-shaped

centered around the true value (
), which in our case was 0.

sδ ̂ 

δ

This distribution of estimates is
also called the sampling
distribution.

The central limit theorem states
that, with many observations, the
sampling distribution
approximates a theoretical
distribution - the normal
distribution.
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Theoretical distributions
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Quick recap
Remember our problem: We were not sure how (un)likely exactly our observation
was in the Null world

Thanks to the central limit theorem, we know that sampling distributions
approximate theoretical distributions.

And for theoretical distributions, thanks to math, we know exactly how likely a
certain value is 
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The most famous bell-shaped
distribution is the (standard)
normal distribution.

The standard normal distribution
is centered around 0 and has a
standard deviation of 1.
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We know, e.g., that 99% of the
distribution lie between  2.58±
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Or that 95% of the distribution
lie between  1.96±
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Now, all we need to do is bring
our sampling distribution on the
scale of a standard normal
distribution.
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Now, all we need to do is bring
our sampling distribution on the
scale of a standard normal
distribution.

We achieve this by

1. Subtracting the mean from all
values (in our case, that is 0, so
nothing happens)

In our case, that is (almost) 0, so
not much happens

differences_mean_centered <- differences - mean(differences)1

mean(differences)1

[1] 0.006633846
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Now, all we need to do is bring
our sampling distribution on the
scale of a standard normal
distribution.

We achieve this by

1. Subtracting the mean from all
values

2. Dividing by the standard
deviation

Since the sd is small than 1, our
values become bigger

differences_scaled <- differences_mean_centered / sd(differences_mean_centered)1

sd(differences_mean_centered)1

[1] 0.03814568
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Instead of a histogram, we can
use a density plot (which uses the
same y-axis as the normal
distribution, namely density)
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Finally, we can lay over the
standard normal distribution
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Now we can say for sure that in
our Null world, chances that we
get an estimate as extreme as the
one in our IMBD data is less than
5%
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You can even calculate the exact probability of observing the estimate in a null world…

1. Bring your estimate on a scale of the standard normal distribution (that is also called
a z-value)

estimate <- 0.731
sd_sampling_distribution <- sd(differences)2

3
z_scaled_estimate = estimate / sd_sampling_distribution4

5
z_scaled_estimate6

[1] 19.13716

You don’t need to do a simulation of your sampling distribution all the time. In general, we obtain the standard deviation
of the (imaginary) sampling distribution with math. This standard deviation is so important that it has its own name: the
Standard Error (SE)

Note
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You can even calculate the exact probability of observing the estimate in a null world…

1. Bring your estimate on a scale of the standard normal distribution (that is also called
a z-value)

2. Look up the corresponding probability (luckily, in R that’s very easy)

estimate <- 0.731
sd_sampling_distribution <- sd(differences)2

3
z_scaled_estimate = estimate / sd_sampling_distribution4

5
z_scaled_estimate6

[1] 19.13716

# the pnorm() function gives the cumulative probability from the standard normal distribution 1
2

# Two-tailed (i.e. a value "at least as extreme as", in both directions)3
probability <- 2 * (1 - pnorm(z_scaled_estimate)) 4

5
# in our case, the probability is reeaally low (practically 0)6
probability7

[1] 0

In the real world, people actually use a slightly different version of the standard normal distribution, the t-distribution.
The principle, however, is the same.

Note
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 The probability that you have just calculated is also called p-value 

It’s the probability of observing an estimate at least as extreme as the one in our
sample, in a world where there is no true effect (the Null world).
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Hypothesis testing in a nutshell
Step 1: Calculate an estimate based on your sample ( ).
This is the main measure you care about: the difference in means, the average, the median, the
proportion, the difference in proportions, etc.

δ ̂ 

Step 2: Use simulation to invent a world where the true effect ( ) is null.
Simulate what the world would look like if there was no difference between two groups, or if there
was no difference in proportions, or where the average value is a specific number.

δ

Step 3: Look at  in the null world.
Put the sample statistic in the null world and see if it fits well.

δ ̂ 

Step 4: Calculate the probability that  could exist in the null world.

This is the p-value, or the probability that you’d see a  at least that high in a world where there’s no
difference.

δ ̂ 
δ ̂ 

Step 5: Decide if  is statistically significant.
Choose some evidentiary standard or threshold for deciding if there’s sufficient proof for rejecting
the null world. Standard thresholds (from least to most rigorous) are 0.1, 0.05, and 0.01.

δ ̂ 
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An applied example
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Are action movies better than comedies?
We can use a single command in R to test this hypothesis

# Perform a t-test to compare ratings between Action and Comedy movies1
t.test(rating ~ genre, data = movie_data)2

    Welch Two Sample t-test

data:  rating by genre
t = -26.537, df = 5578.2, p-value < 2.2e-16
alternative hypothesis: true difference in means between group Action and group Comedy is not equal to 0
95 percent confidence interval:
 -0.7907698 -0.6819730
sample estimates:
mean in group Action mean in group Comedy 
            5.237372             5.973744 

We get a very small p-value

# Using format() to use non-scientific notation1
format(2.2204460493e-16, scientific = FALSE)2

[1] "0.0000000000000002220446"
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That’s it for today :)
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